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The primary electroviscous effect in a suspension of spheres 

By J. D. SHERWOOD 
Department of Applied Mathematics and Theoretical Physics, 

Silver Street, Cambridge 

(Received 13 June 1979 and in revised form 25 April 1980) 

Previous studies of the distortion of the electric double layer around a charged sphere 
have assumed that the electric stresses are small compared with the viscous stresses. 
The flow around the particle is therefore changed only slightly by the presence of the 
charge cloud. This change is measured by the Hartmann number, and in $ 6  we remove 
the restriction that it should be small. It is found that the previous linearized theory is 
sufficiently accurate for typical experimental values of the Hartmann number. 
Previous studies have also assumed that the potential a t  the surface of the particle is 
small. This assumption is removed in $ 7 of this paper. For values of the non-dimen- 
sional surface potential smaller than 2 the predictions are altered by less than 10 %. 
For higher values the differences between linear and nonlinear theory are not negligible, 
especially when the charge cloud is thin compared with the radius of the charged sphere. 

1. Introduction 
The dynamical behaviour of a suspension of charged particles differs from that of a 

similar but uncharged system. Three mechanisms for these effects have been proposed 
by Dobry (1953). The ‘secondary’ effects are caused by interactions between charged 
particles, while ‘tertiary’ effects are present when electrical forces cause the particles 
to change their shape, as happens with polyelectrolytes. Here we shall be concerned 
with the ‘primary’ effect. When charged particles are suspended in an electrolyte 
they attract a cloud of counter-ions. Motion of the fluid distorts the charge cloud 
producing additional stresses and modifying the Einstein coefficient which character- 
izes the viscosity in the dilute limit. Previous theories (Booth 1950; Russel 1978; 
Lever 1979) have assumed that the flow field around the particles is modified only 
slightly by the presence of the charge cloud. In  5 6 we shall remove this restriction. 

Booth made the further assumption that the electrical energies of the ions were 
much smaller than their thermal energies, i.e. e$o < kT where e is the electronic 
charge, $o the potential at the surface of the particle, and kT the Boltzmann tem- 
perature. This implies that the number density of ions in the charge clouds differs only 
by O(e$-,/kT) from its value in the bulk solution. In nature values of e$,/kT as high 
as five typically occur, so the second aim of this paper is to remove Booth’s assumption 
that the potential is small. This will be achieved in $ 7 .  

We shall not be concerned with the origin and behaviour of the surface charge. Thus 
we shall think of any layer of adsorbed ions as being part of the particle itself. The 
particles will be sufficiently small for the flow to satisfy the Stokes equations, and we 
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assume a constant viscosity ,uo right up to the particle surface. Our surface potential 
$o is conventiona.1ly known as the g-potential. 

2. The equilibrium charge cloud 
The equations governing the distortion of the charge cloud have been set down by 

Booth (1950). We assume that the suspending electrolyte contains several species of 
ions, each with number density nm and valence zm. The charge carried by each ion is 
ezm and the total charge density p is 

p = 2 nmzme. 

Far from any charged particle the number densities of the ions attain limiting values 
ng,  where 

m 

xnzzme = 0 

for electrical neutrality of the solution. The electric potential $ is given by Poisson’s 
equation: 

where we require $ = $o on the particle surface and 4 -+ 0 far from the particles. 
The ions move with the fluid under the influence of electrical and thermodynamic 
forces. The velocity of an ion of the mth species is therefore 

m 

V=$ = -p/., 

vm = u + urn( - ezmV$ - kTV log nm) (1)  

where u is the fluid velocity and a m  the mobility of thernth species of ion. In  future we 
shall assume that all the ion mobilities are the same, and equal to w .  This approximation 
is fair for ions of similar molecular size, and enables us to study the charge density 
rather than the motion of the individual ion species. We shall assume that the ions 
are not taking part in reactions, and consequently that they satisfy the conservation 
equation : 

anm - + V . (nmvm) = 0.  
at 

When u = 0 the charge cloud is in thermal equilibrium and is not distorted by motion 
of the fluid. Denoting thermal equilibrium by means of the subscript 0,  the number 
density nr of the mth species of ion will be given by the Boltzmann distribution: 

n? = n: exp [ - ( e ~ ~ $ ~ / k T ) ] .  

Inserting this into Poisson’s equation gives the Poisson-Boltzmann equation: 

V2#, = - zmnz exp [ - (ezm$,/kT)]. 

When e@, << kT the exponentials may be expanded as a power series. After linearizing 
with respect to the small potential, the Poisson-Boltzmann equation becomes 

where 
v2$, = K2$,, 
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The Debye length K - ~  is a typical size of the charge cloud. We shall not for the moment 
perform this linearization, but will instead restrict ourselves to an electrolyte con- 
taining one species of positive monovalent ions and one of monovalent negative ions, 
denoted in future by the superscripts + and - respectively. 

In  one dimension the Poisson-Boltzmann equation may be solved analytically. 
Setting p = e#,/kT and letting t be the distance from the charged plane, non-dimen- 
sionalized with respect to K - ~ ,  the equation becomes: 

V2p = sinhp. 
This has solution 

p = 2 log {S) 
where A is a constant of integration which depends on the boundary condition a t  the 
plane t = 0. I n  particular, for a plane a t  a given non-dimensional potential $, 

et@o + 1 A = -  

Substituting this into (2), we find when $, is large that, outside a boundary layer of 
thickness e-*@o, 

eB@o - 1 * 

when 

Thus outside the boundary layer the potential saturates and attains a value indepen- 
dent of $,. The far field form is 4e-t, which is the linearized solution for a plane a t  
potential $, = 4 .  The presence of a boundary layer of thickness e-**o in which p falls 
from $, to a value of order 4 explains the difficulty which is always encountered when 
solving the Poisson-Boltzmann equation numerically. 

We now study the spherically symmetric charge cloud around a sphere of radius a. 
Non-dimensionalizing the radial distance r from the origin by a ,  the Poisson-Boltzmann 
equation becomes 

d2p 2dp -+-- = (aK)*sinhp dr2 r dr 
where 

p =  $, a t  r =  1, 

p - + O  as r-+oo. 

This has to be solved numerically, and the solution is always smaller than the corres- 
ponding linearized solution #, = $,eaK(1-*)/r. However, since the forces on the ions 
depend on V p  rather thanp, it is not clear whether the electroviscous effect is increased 
or diminished by linearization. We shall see later that both types of behaviour are 
possible. A saturation of the equilibrium potential also occurs in three dimensions. 
Figure 1 shows the coefficient of eaK(l-f)/r in the far field as a function of $,, for various 
a K .  As $, -+ 00 each curve attains the limit $ ' l , m ( a K ) .  We can see that as a K  + 0 the 
linearized solution is good up to higher potentials, and that for $, < 2 i t  is accurate 
to within 10 % whatever the value of aK. The variation of $'l,m with a K  is shown in 
figure 2. 

20-2  
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FIGURE 1. The coefficient of eQK(l-r)/r in the far field of an equilibrium 
spherical charge cloud, for various a K .  

$ 0  

When aK B 1 curvature is negligible. We may attempt a series solution of the 
Poisson-Boltzmann equation, expanding p asp,, +pl + . . . where pi is O(aK)". Defining 
an inner variable t by r = I + t / u K ,  we find that po is simply the plane potential (2)' 
while 

Taking the limit @,, -+ co (i.e. A -+ 1) we find 

4t e-t 
po+p,+e-t 4+- -- as t-+oo. ( a:) a K  

This inner expansion is valid only for t 5 UK, but when a K  is large the potential decays 
sufficiently in the inner region for the linearized solution to be valid in the outer region, 
and matching implies 

2 
U K B  1 .  +,im 4+- 

UK' 

When aK < 1 the term ( a K ) 2  sinh ( p )  in the Poisson-Boltzmann equation will not be 
as large as V2p near the particle unless p N - log (aK) .  Errors caused by linearization 
of sinh ( p )  will therefore not be significant a t  smaller potentials, and from figure 2 
we see 

@lim N 3 - 2.61og ( a K )  as UK -+ 0. (3) 

Close to a highly charged surface the Poisson-Boltzmann equation predicts an 
exponentially large number density of counter-ions. Since each ion has finite size, 
such a high density might not be attainable. Moreover, we have neglected such effects 
as discreteness of the charge, ion-ion interactions, ion-surface interactions and 
variations in the dielectric constant of the solvent close to the particle surface. Levine & 
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FIGURE 2. @llm = coefficient of eaK(l-")/T in a saturated equilibrium 
charge cloud, as a function of a K .  
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FIGURE 2. @llm = coefficient of eaK(l-")/T in a saturated equilibrium 
charge cloud, as a function of a K .  

Bell (1966) have estimated that for $o < 3, with an ion concentration < 0.1 moles/ 
litre, the corrections may be neglected, since they tend to cancel each other. Despite 
all the attention lavished upon the equilibrium double layer, no generally valid theory 
has been produced. I n  order to render our electroviscous problem tractable, there 
seems no alternative but to adopt the unmodified Poisson-Boltzmann equation. 

3. The distortion of the charge cloud and of the fluid motion around each 
particle 

Weak potentials 
We first examine the distortion of the charge cloud caused by motion of the fluid. 
Let us assume that elClo < kT: this implies that the electrical energy of the ions is 
small compared with their thermal energy. The ion concentration nm therefore differs 
only by O ( e k o / k T )  from its value nz far from any particle. Substituting the expression 
(1) for the ion velocity v into the ion conservation equation, we may then neglect 
terms which are O(e$o/kT)2.  This enables us to perform a summation over t'he ion 
species to obtain 

Equation (4) represents a balance between the convective forces deforming the charge 
cloud, and the electric and thermal forces tending to restore equilibrium. The ratio 
of these two effects is measured by the Pdclet number Pe = U / o k T K ,  where U is a 
typical velocity. For a shear flow of strength I? with a typical length scale K - ~ ,  P e  
becomes r /wkTK2.  We assume Pe to be small, which is valid if I? is typically much 
smaller than 1 0 8  s-l. Russel (1978) and Lever (1979) have removed this restriction 

V2p - = V . ( u p ) / w k T .  (4) 
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but only in the limits of very thin and very thick charge clouds, respectively. Expand- 
ing p as po + p1 + . . . , where pi is O(Pe)i ,  (with a similar expansion for $), we obtain first 
from (4) and from Poisson’s equation the equilibrium charge cIoud #o = -po/eK2, 
where for a spherical particle of radius a, 

po = - eK2$oaeK(a-r)/r. 

The first corrections p1 and #1 caused by the weak flow are governed by 

and 
V2p1 - = V . (up,)/wkT 

V2$, = - p l / e .  

We assume that the suspending fluid has viscosity po, is incompressible, and that 
its motion is governed by the Stokes equation: 

0 = pov2u  - v p  - pV$ 

where the last term is the electrostatic body force. Expanding it for weak flow we 
find that a t  the lowest order the unperturbed term p0V$, may be absorbed into the 
pressure and has no dynamical significance. The O(Pe) correction is governed by 

P0V2U = VP + POT($, + P 1 / € K 2 )  

after again absorbing a term into the pressure. Since p1 is typically O(UEK$o/wkT) 
and po is typically O ( E K ~ $ ~ )  the presence of the charge cloud causes a change u‘ in the 
velocity, where l u ’ / / U  - $Ee/wkTpo. This non-dimensional group, known as the 
electric Hartmann number He, measures the ratio of the electric and viscous forces 
acting on the fluid. However, in the case of a thin charge cloud (i.e. UK 9 l ) ,  only the 
velocity component normal to the surface distorts the charge cloud. Since this com- 
ponent varies only quadratically with distance from the surface, the distortion of the 
cloud is O(Pe/aK) and hence 

$;e/wkTp,aK for UK B 1,  

H e =  [$ie/wkTpo otherwise. 

The quantity # 1 + p 1 / e ~ 2  = say, appears in the Stokes equation and will recur 
throughout the analysis. It was used by Booth (1950), but with little explanation. 
We may think of V x  as the force acting on the charge cloud. pV#, is the perturbed 
electric force acting on the ions, while V p ,  is proportional to the thermodynamic force. 
Hence V x  is the net force restoring equilibrium. Combining ( 5 )  and (6) gives an equation 
governing x alone : 

V 2 x  = u . Vpo/wkTK2E, (7)  

where we have used the incompressibility of the fluid. Our boundary condition is that 
there should be no flux of ions into the surface of the particle, and hence j . n = 0 there, 
where n is normal to the surface and j is the current density. We are therefore neglecting 
any flow of ions into or out of the Stern layer of adsorbed ions. Little is known about the 
non-equilibrium behaviour of the Stern layer, but if its capacity is small, or relaxation 
time large, then any surface currents will be small. By an appropriate summation of 
( 1 )  over all ion species, we find 

j = p,u - okTeK2VX. 



Primary electroviscous e#ect in a suspension of spheres 616 

Hence n. Vx = 0 on the surface of the particle, since u . n = 0 there. At infinity the 
charge cloud and any perturbation decay to zero. 

The distorted charge cloud with arbitrary surface potentials 

We now remove the restriction that elCro < kT, though instead, as in 8 2, we restrict 
ourselves to one species of positive monovalent ions and one of monovalent negative 
ions. We again assume that the PBclet number is small, and we therefore expand the 
ion densities n as no+n,, where n, is O(Pe). We expand q5 similarly. Linearizing in 
the small PBclet number, the ion velocities may be written as 

where 

xk = n+ e f p  & en,lkT. 

The ion conservation equation is now 

V .  (n*v*) = 0.  

To leading order in the PBclet number this is 

nm 
wkT 

v2x+-vp.vx+ = --u.vp, 

na3 
wkT 

v2x-+vp.vx- = +-u.vp. 

The boundary condition that there should be no flux of ions into the surface requires 
n.Vx* = 0. We again require that the charge cloud and its perturbation decay a t  
infinity: i.e. x* -+ 0 as r --t 00. 

4. The stress 
We follow the presentation due to Batchelor (1970), as modified to include electrical 

effects by Russel (1976). The contributions of the particles and their double layers to 
the stress was shown by Russel to be 

where S,, V,  are the surface and volume of the nth particle in the volume V. We now 
assume that the suspension is dilute : the particles therefore contribute separately to 
the stress. If there were no electrical effects the surface integral would give Einstein’s 
term for the increase in the stress. However, the electrical force -pV+ alters the 
flow of the fluid and thereby modifies this surface integral. Rather than compute this 
alteration to the entire flow field, we may instead immediately obtain the surface 
integral via the reciprocal theorem. This makes use of a second, comparison, problem 
in which there are no body forces and in which the particle is assumed to deform with 
a given straining rate. If the velocity U outside a rigid particle in a straining flow 
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E . x is written in the form U = F .  E, where F is a third-rank tensor constant, then the 
reciprocal theorem shows that the total electrical contribution to the stress is 

SV,pV#. FdV,  (10) 

s V j V x .  Fp,dV = - Vp, .  FXdV. (11) 
s v j  

JvjV$o.  Fe{e -PX+ - epx-}. (12) 

where the integral is over all space outside the particle. 
For weak potentials we can again make our small PBclet number expansion of p 

and 4. Using the properties of F ,  (10) may be expanded, correct to the fist order in 
the PBclet number, in the forms 

Thus we see that, when Pe < 1,  x is indeed the only perturbed quantity required. 
For arbitrary potentials the stress (10) may be put into the form 

Thus the contributions of the two types of ion to the stress integral (12) are uncoupled, 
as are the equations (8) governing the perturbations of the ionic charge cloud. We 
may now compare our theories for weak and for arbitrary potentials. V x  gives the 
total force on the charge cloud, while Vx* give the forces on the individual ion species. 
When $, is small, xi  become n$ & n,e#,/kT implying that ex+ - ex- = S K ~ X .  Thus 
x+ -x- is as $, + 0. Adding equations (8a)  and ( 8 b )  we obtain 

V2(X+ + x - )  = VP .V(X+ - x-1. 
Hence x+ + x-  is O($t)  as $, + 0 and does not enter the linearized theory. We may 
pursue this line of analysis further in order to obtain results for small potentials as 
an expansion in $,. This problem is tractable when a K  $ 1 yielding a contribution to 
the viscosity 

] as $,-+o. 15€ ( c)2 Q, ($t + $: - 3.21, $$ + . . . 
( a K ) 2  o k T  e 

Here CD is the volume fraction of particles in the suspension, and $o is non-dimensional- 
ized with respect to k T / e .  For small $, the effect is larger than predicted by linear 
theory, while there is a suggestion that for larger potentials there could be a maximum. 
However, (13) is maximal at  $, = 7.2, which is well outside the range of validity of 
the expansion. 

5. Restriction to spherical particles 
Weak potentials 

The expression (10)  for the stress applies to rigid particles of arbitrary shape. We now 
restrict our attention to a spherical particle of radius a. Suppose the flow imposed at 
infinity is linear and equal to E . x + R . x where E is the symmetric strain-rate tensor 
and R the antisymmetric vorticity tensor. The flow around the sphere in the absence 
of electrical effects is 

E . X + X - - - . ~ ( ~ - Z ) .  x.E.x 5 a5 
r2 
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As Russel (1978) explains, the vorticity merely rotates the particle and its charge 
cloud without distorting the cloud, so to the first order in the weak flow it has no effect. 
The governing equations form a sixth-order set of differential equations which for- 
tunately are separable by spherical harmonics, so we look for solutions of the form 

The functions f and g for an uncharged particle are given in ( l a ) ,  which also shows 
that F = Ix( 1 - a 5 r 5 )  - 5xxx(a3r-3- ~ ~ r - ~ ) / 2 .  We now scale lengths by the radius of 
the sphere. This is done for convenience in the numerical computation and results in 
the parameter aK appearing explicitly in some analytic expressions. For example, the 
Hartmann number becomes M = 2q&(a~)~/wkT,u~ where the factor 2 is introduced 
for convenience. The Stokes equation, and those representing the distortion of the 
charge cloud (7) and the incompressibility of the fluid become 

f + 9 f "rl + 6 f 'r-2 - 30 fr-3 = M ( a ~ r - ~  + r-4) eaK(l-")q(r), 

q" + 2q'r-l- 6qr-2 = - eaK(1-r) (9 +f) (aK + r-l), 

(15 )  

(16) 

g' +f' + 3 fr-l = 0, 

with boundary conditions 
f, q, ( g  - 1 )  -+ 0 a t  infinity, 

q',f,g = 0 a t  r = 1 .  

Having found x, we must finally evaluate the stress integral ( 1  1 ) .  Performing the 
angular integrations analytically, we find that the electrical contribution to the vis- 
cosity in a suspension of volume fraction Q, is 2 Q , $ i s ( a ~ ) ~  J/wkT = MJQ, where 

J = JIm q(r) eaK(1-7) (2r + 3r-4- 5r-2) ( 1  +am) drl.20. 

Arbitrary potentials 

In the more general case we know the potential p ( r )  only as a numerical solution of 
the Poisson-Boltzmann equation, and we inevitably must solve the equations (8) for 
x+ numerically. We look for solutions of the form 

where by (8) 

q i  + 2r-lq; - 6 r 2 q +  -p'q; = - rp' ( 1  - 2 + w 3  + 1 .5r5 ) ,  

qI + 2r-lp.L - 6r-2q-+p'q1 = +rp'(l  - 2.5r-3+ 1 . 5 r 5 ) ,  

(18a) 

(18b)  

with boundary conditions 
q; = 0 a t  r =  1 ,  

q& - O(+) as r - f o o .  
In equation ( 1 8 )  we have used the velocity field appropriate to low Hartmann numbers 
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as given by equation (14). The angular integrations in the stress integral (12) may be 
performed to give the increase in the stress of the suspension: 

where 

6. The Hartmann number 

In  this section we shall investigate how strongly our results depend upon the Hartmann 
number. We therefore postpone our study of arbitrary potentials to 3 7: like Booth, 
we shall assume here that the surface potential is weak. Booth found x using the un- 
perturbed velocity field (14) in equation (16), and then calculated the change in the 
stress. This method merely gives the leading term in an expansion for small Hartmann 
numbers. Higher terms may be obtained by an iterative process. Having found x we 
may use this result in the Stokes equations (15) and (17) to give a correction to u. 
Returning to (16) we obtain a correction to x, and so the process continues. The 
problem is tractable in the limit of a thin charge cloud (aK 9 l), and predicts 

Small Hartmann numbers 

& + ...))). 
First comes Einstein’s term for uncharged spheres and the second term is that 
obtained by Booth. The final term is O(HZ) and we note the appearance of the Hart- 
mann number predicted in $3.1 for the case UK 9 1. This additional term is negative: 
the flow is modified so as to reduce the perturbation of the charge cloud (cf. Lenz’s 
law). More generally, numerical solutions of the governing equations (15)-( 17) indicate 
that motion of the fluid diminishes as the electric forces increase, and the electro- 
viscous effect therefore grows more slowly than the linear predictions of Booth’s 
theory. When the Hartmann number becomes very large these solutions show the fluid 
adjacent to the particle to be almost at  rest. We shall first study these high Hartmann 
numbers analytically and then look in more detail a t  the numerical results. 

High Hartmann numbers 

When the Hartmann number is large we intuitively expect the fluid close to the sphere 
to be held a t  rest by the strong electric forces which would be created by any pertur- 
bation of the charge cloud. These electrical effects decay exponentially away from the 
sphere, while the viscous stresses vary only algebraically and therefore dominate far 
from the particle, In between these two extremes there will be a transition region in 
which the two sets of forces balance. We expect this region to have size K - ~ ,  the length 
scale on which the charge cloud decays. The numerical results confirm our intuition. 
We examine each of the three regions in turn. 

We approach the problem via the method of matched asymptotic expansions. 
Near the sphere eaK(l-r) is O( 1) and it is impossible to balance the large parameter M 
against the highest derivatives off and q in (15) and (16). We must therefore conclude 
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FIGURE 3. The flow function - f ( v )  plotted against radial position r for a K  = 500, (a) for 
M = 0, (a) for M = 10ls. All but the last oscillation in (a) are too small to be shown to scale. 

that f and q are each exponentially small when ( r -  1) is small. Any perturbation to 
the charge cloud produces restoring forces so strong that the flow and perturbation 
are reduced almost in zero. A balance becomes possible a t  r N R, where 

i.e. 

R - -  lnM as ~ + m .  
2 a ~  

This asymptotic estimate is accurate only a t  very large M ,  and we shall prefer numeri- 
cal solutions of equation (19). The asymptotic analysis is thus applicable when aR, 
the dimensional radius of the sphere in which there is little motion, is much larger than 
the length scale K - ~  over which the electric fields decay. 

At distances within O(UK)  of r = R the electric forces and viscous forces can balance. 
To investigate this region we define an inner variable y by r = R + y/aK and expand f as 
fl +fi + . . . , where!, is O(~,- , /RUK).  We expand q and g similarly. The dominant terms 
of the governing equations (15)-( 17) are then 

fl,,, = M)e-uql/R, 
qlyu = - e-vR2aK(g1 + f1) M f ,  

glU +flu = - 3f1/Ra~.  

We can see clearly the balance between fi w M*q, and q1 - (gl + fl) M-*. For y 9 1 
solutions have the form 

fl - A e-%+ Be-2u+ Cye-v + D + Ey + Py2 as y + co. 
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FIGURE 4. Sketch of the eddies which occur at high Hartmann numbers. 

For y < - I we balance the highest derivatives against the large factor e-* to obtain 
solutions which decay as y --f -a: 

3: 
exp [ - 3ge-&*] and exp [ - e - h ]  sin [!' e-+u] . 

cos 2 

Thus we can have solutions which are exponentially small for small r, as required. 
Since the oscillatory solutions decay the more slowly, we expect them to dominate as 
y -+ - 03. Figure 3 shows - f given by the numerical solution of the full equations a t  
M = lofe, a K  = 500; g and q exhibit similar oscillations. The zeros of (20) occur a t  
38e-*2//2 = nn + 6' where 6' is some unknown phase. As n becomes large the half period 
for r approaches (3a~)- l ln  (1 + n-l). The decay between successive maxima is 

exp ( -  39n) = (6.133)-1. 

When a K  = 500 and M B 1 this period and rate of decay are in good agreement with 
the full numerical solutions. When a K  = 0.5 oscillations also occur, though the highest 
value of RaK studied was only 4.5, and quantitative agreement was poor. We may 
interpret these oscillations as a series of eddies, depicted in figure 4. Moffatt (1964) 
found that the magnetic field due to a line current can produce two-dimensional 
eddies by inhibiting radial motion in magneto-hydrodynamic flows. In  our problem 
it is the electric field which inhibits radial flow. 

I n  the far field we expect a solution which varies on the length scale of the effective 
radius R. We choose an outer variable w = Rr and look for solutions of the form 
f = + P w - ~ ,  g = 1 - 2p/5w5, q = yw-3. Matching (f + g) with the solution in the 
transition region we obtain 1 + a+ g/3 = 8B/RaK. Matching q gives y = -ARM-*, 
while matching f gives a + p = 0, to leading order. Hence p = -a  = $ + corrections. 
Thus the far field is flow around a rigid sphere of radius R. 
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FIGURE 5 .  The increase MJ in the intrinsic viscosity due to electrical forces, plotted against M ,  
for UK = 500. The numerical computations are given by the solid curve and the asymptotic 
predictions for M + 0 and M + 00 are given by broken lines. 

The particle contribution to the bulk stress can be derived from the stress integral J. 
Alternatively one can look a t  Russel’s (1976) derivation of expression (9), and note 
that it may be applied to any surface S, surrounding the particle. If we choose a 
surface outside r = R the electrical forces contribute little to the volume integral, 
while the surface integral yields the result for a rigid sphere of radius R. Thus we find 
that  the viscosity of the suspension becomes 

,u0( 1 + 3@R3) as M + co, 

where R increases only slowly as M increases. 

Numerical results 

In  general we must solve the governing equations (15)-(17) numerically. They form 
a sixth-order set of equations, with three boundary conditions a t  r = 1 and three a t  
infinity. A fourth order Runge-Kutta scheme was used, shooting outwards from r = 1 
to beyond the charge cloud, where the nature of the algebraic decay off, q and (g  - 1) 
is known. Since the equations are linear, four shots suffice to determine the behaviour 
of the solution for large r as a function of the initial conditions a t  r = 1 : a fifth shot 
then successfully attains the boundary conditions. When M = 0 the numerical 
results agree with Booth’s theory, and for aK & 1, M < 1 they agree with the results 
given in 3 6.1. The behaviour was found to be similar for all values of aK, so two cases, 
U K  = 0.5 and 500, were investigated in detail and pursued to as high a value of M as 
possible. When aK = 0.5 we require M = 10 before there is a 3 yo decrease in J .  When 
UK = 500 and M = lo7, J has decreased by less than 4 %. However, this very large 
value of M corresponds to the Hartmann number given earlier for thin charge clouds 
being just 0.04. 

In figure 5 we plot the change in the intrinsic viscosity due to electrical forces, M J ,  



622 J .  D .  Sherwood 

I I I I I I I )  
1 10 102 1 0 3  104 105 106 

M 

FIGURE 6. The numerical value of MJ divided by the asymptotic prediction 
at a K  = 0.5. 

against M when UK = 500. For small M ,  J is constant and so the intrinsic viscosity is 
proportional to M .  Although J decreases for larger M ,  we observe that the intrinsic 
viscosity always increases as M increases. The theoretical prediction M J  N $(R3- 1) 
for large M is also plotted, where we have used R as obtained numerically from equa- 
tion (18). There is a difference of 0.003 between this value of R and the one given by 
a full solution of the governing equations. The two curves of figure 5 are therefore 
parallel but not coincident. This difference becomes unimportant as R becomes large; 
to remove it we should have to pursue further the asymptotic expansion and analysis. 
Figure 6 shows the ratio of the computed values of M J  to the asymptotic predictions 
for large M when UK = 0.5.  As RUK becomes large the numerical result rapidly ap- 
proaches the asymptotic theory. When M = 106, M J  = 1.9 x lo3 and is large, but 
RUK is still only 4.5. 

In  conclusion, then, the electrical contribution to the intrinsic viscosity, M J ,  is 
less than predicted by Booth’s small-Hartmann-number theory. However, the 
experimental values of M encountered are not usually very large. In the experiments 
of Stone-Masui & Watillon (1968) He is typically 6 ,  while a~ is typically 1 .  Thus M is 
typically at most .12 and Booth’s theory overestimates the result by 3 yo. Although 
the non-dimensional number He measuring the strength of the electrical forces is often 
not small, as assumed by Booth, we may conclude that in practical conditions it is not 
sufficiently large to significantly affect his predictions. We shall use this result to 
simplify the analysis of arbitrary potentials in $ 7 ,  where we shall assume that the 
Hartmann number is small. 
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7. Arbitrary surface potentials 
The numerical scheme 

We assumed throughout $6  that the potential q90 was small. We now remove this 
assumption. Instead of solving equation (16) to find x, we must now consider sepa- 
rately the individual ion species, solving (18) to obtain x+ The motion of the fluid is 
still governed by the Stokes equation, but the results of $ 6  tell us that the flow will 
not differ greatly from that around an uncharged sphere (14), and this will suffice for 
our purposes. There is therefore no need to consider an equation, analogous to (15), 
for the motion of the fluid. 

The differential equations were solved using a fourth-order Runge-Kutta scheme. 
In  this case, though, we must first find a numerical solution of the nonlinear Poisson- 
Boltzmann equation which governs the unperturbed charge cloud. This was solved 
using a shooting technique, starting a t  the surface of the particle ( r  = 1). Ideally a 
freely varying step-length should be used in order to accommodate the thin boundary 
layer close to the particle. However, since the results were to be tabulated and used 
to findxk, it proved convenient to make a t  most two changes of steplength. The integral 
I was computed by Simpson’s rule. Halving all step lengths suggests that the accuracy 
was about 1 yo, except for the very highest potentials when there may be 5 yo errors. 

Booth’s (1950) theory predicts an electrical contribution to the viscosity which i@ 
proportional to $: and the numerical results increase quadratically when q90 is small. 
In the following sections we study the behaviour when e$,,/kT becomes large, and 
compare our analytic predictions with the numerical results. When a K  9 1 the intrinsic 
viscosity first increases to a maximum as $, increases, and then decreases to a limiting 
value (see figure 8). In  Q 7.2 we predict the initial increase in the intrinsic viscosity, 
but the analysis breaks down before the maximum is attained. In  $ 7.3 we study the 
region beyond the maximum. When a K  < 1 the intrinsic viscosity increases mono- 
tonically to a limiting value as $o increases (see figure 9) and we study this case in 
$ 7.4. 

Thin charge cloud with intermediate potentials 1 < ek+o << a K  

When the double layer is thin we may to a first approximation neglect curvature. 
Taking t = aK(r - 1 )  as an inner variable, the equilibrium potential is given by the 
one-dimensional solution (2). In  terms of the inner variable the equation for x+, (18a), 
becomes 

We may neglect q + t / a K  in comparison with ptq+t near the surface, since pt B 1. We 
assume that q+ is not sufficiently large for q+(aK)-2 to be important and verify this a t  
the end. Integrating (21) once and matching with an outer solution of the form C,T-~ 
outside the charge cloud, we find that C, = -201og2(a~)-~ = q+(O). Including the 
term 6 q + ( a ~ ) - ~  on the right-hand side of (21) as a correction, we find that it is indeed 
negligible. Following exactly the same argument for q-, we obtain 

q - ( O )  = lo($o - 2 log 2) (aK)-2 

but we find that the term 6q-(a~)-~  is negligible only if $, < 210g (aK) .  When this 
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FIGURE 7. The stress integral I ( U K f P  as a function of 4(., when UK = lo4. The broken line D 
shows the expansion (13) valid for small potentials, while the broken line D' shows the predictions 
of $7.2.  

holds, both q+ and q- vary only slowly in the inner region. The stress integral I can 
now be evaluated. The positive ions are excluded from the innermost region close 
to the positively charged particle, and are present only in the outer part of the charge 
cloud. I n  the limit @o + 00 their contribution to the stress integral becomes 

1200(log 2)2 (a4-4 

which is independent of $,,. This reflects the saturation of the outer part of the cloud. 
The Boltzmann distribution for the number density of the negative ions increases 
exponentially as we approach the particle, and their contribution 

as @,, --f co. Hence 
I N 300(@: - 4$0 log 2 + 8 log2 2) ( u K ) - ~  + O ( U K ) - ~  

which may be compared with the result I N 150@i(a~)-~  as e0 -+ 0. 

N 300(@, - 2 log 2)2 (uK)-* 
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Figure 7 shows the numerical results for I ( ~ K ) ~  as a function of $, when aK = lo4. 
When $o is small, we may compare them with the expansion (13)) which is shown as 
a broken curve D. The first term alone of ( 1  3 )  is out by 5 yo a t  $o = 2, while all three 
terms togither are accurate to within 5 yo a t  $o = 5 .  A second broken line D’ indicates 
the asymptotic result of this section. This is accurate to within 5 yo when $, = 5. 
Because the analysis eventually breaks down, the upper limit of acceptable accuracy 
depends on a K ,  and when arc = lo4 we have 5 yo accuracy up to $o = 9. 

Thin charge cloud with high potentials 1 < ( a K ) 2  < ( a K ) 2  $, 5 e**o 

Figure 8 shows the numerical results for I ( ~ K ) ~  as a function of $o for several large 
values of aK. The stress integral I is scaled by ( a ~ ) ~  so that all curves should coalesce 
onto the expansion for small potentials ( 1  3 ) .  We may note, however, that (13)) regarded 
as an expansion in powers of (aK)-l is poor unless aK 9 100, since the next term is 

The striking feature of figure 8 is the maximum which occurs on each curve. To the 
left of the maximum the intermediate theory of 5 7 . 2  holds, though it has hardly any 
chance to become established unless aK 2 100. This analysis, however, breaks down 
when $o is no longer small compared with log (aK). We now study the high potentials 
to the right of the maximum. 

When k0 > 1 the equilibrium potential p varies rapidly across a region of thickness 
t - e-**o. We also know from (18b) that the Taylor expansion for q- is 

q- = qJ0)  ( I  + 3P(aK)-2+ , ..) 

when t is small. The equation for q- equivalent to (21) is 

(ePq_,),- 6 q _ e P ( a ~ ) - ~  + 2q-,eP(a~)-l = 1 5 ~ ~ e ~ t ~ / Z ( a ~ ) ~ .  

As before, we neglect the third term on the left-hand side, but in 0 7.2 we found that 
the second term is important a t  very high potentials. We may re-write the equation as 

-~ + 2 log ( A  - e- t )  + k0- 2 log 2 

= F(t ) ,  say. 

The term q-(O) e**o comes from the integral I q-epdt with t = O(e-4rl.o). We should 
therefore add to F( t )  a correction IGij-eP(a~)-~dt  where q- = q - ( O )  + p ( t ) .  However 
since p- is O(q-(O)e-+o) when t = O(e-4ll.o) there is no large contribution from this 
correction. If we are to match q- with an outer solution c 2 r 3  valid outside the charge 
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FIGURE 8. The stress integral I ( u K ) ~  as a function of $,, for various large values of UK. The 
broken line indicates the predictions of § 7.3. The line A' shows the contribution of the positive 
ions when UK = 100. 

$ 0  

cloud, we require q-t to be O ( F / U K )  for large t ,  where F is defined above, and hence 
the two large constants must vanish, i.e. 

When UK = 100 this agrees with the full numerical result to within 1 % for $, 2 16. 
When matching with the outer solution we assumed that q- was typically O ( F )  and 
hence that q- (O)  was no larger than (FI i.e. $,e-t*o 5 ( u K ) - ~ .  This therefore defines 
the range of validity of the analysis. The dominant contribution of the negative ions 
to the stress integral I comes once again from the region near t = 0, and is 

75($, - 210g 2)2e-*@o(u~)-3+ 0($:e-4qaK)-4) + 0 ( ~ ~ ) - 5  as $o -+ 03 

(since corrections to  p are O ( ~ ( U K ) - ~ )  and corrections to q- are O ( F ( U K ) - ~ ) ) .  Hence as 
$, -+ 03 the contribution of the negative ions decays to O ( ~ K ) - ~ ,  while the positive 
ions still contribute O(UK)-~. The full expression for I is 

1 - 75($,-22og2)2e-t$b0(a~)-3+ 1 2 0 0 ( ~ ~ ) - 4 l o g 2 2 + 0 ( ~ ~ ) - 5  as $,-+ 03. 

The positive ions are still repelled from the particle into the outer, saturated, part 
of the charge cloud. Their behaviour has not changed, and is still given by 0 7.2, but 
we must examine the new behaviour of the negative ions. The distortion of the spherical 
charge cloud is caused by motion of the fluid normal to the surface, near which 
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FIGURE 9. The stress integral I ( u K ) ~  as a function of @,, for various 
thick charge clouds. 

u . n cc t2. Hence in the innermost boundary layer of thickness e-*$o the normal flux 
of ions is O(n,). For a given perturbation n y  of the charge cloud, x- - n y  e--p and is 
small, as is the non-equilibrium force on the ions V x -  N nie-PVp. However, this 
force acts on the large number of ions n,eP in the boundary layer and the resulting 
flux is O(ny n,Vp). A balance between these fluxes in the ion conservation equation 
is only possible if the perturbation of the charge cloud in the boundary layer is very 
small i.e. if q - ( O )  + 0 as ko -+ 00. Russel found no such restriction when the potential 
was small, and the resulting large tangential forces on the ions gave the dominant 
contribution to the stress. These tangential forces have disappeared now that the 
perturbation of the cloud is small. 

The predicted values of the stress I are shown on figure 8 by broken lines. To demon- 
strate that it is indeed the contribution of the positive ions that dominates a t  large 
potentials, the line A’ shows their contribution when aK = 100, as calculated numeric- 
ally. It is 4.9 x 10-6, rather than the 5.8 x 10-6 predicted in § 7.2. 

Thick charge clouds with high potentials 

Figure 9 shows the behaviour of I ( u K ) ~  as k0 increases for various small values of aK. 
I is scaled by ( a ~ ) ~  so that all curves should coalesce onto Booth’s results for thick 
charge clouds when the potential is small. As the charge cloud becomes thicker, the 
maximum in the curves disappears, and we are left with monotonic increase to a 
limiting value. We may easily grasp the physical mechanism governing thick charge 
clouds without resorting to a mathematical analysis. Lever (1979) has shown that a t  
small potentials the dominant contribution to the stress integral comes from the large 
O ( K - ~ )  volume of the charge cloud rather than the small O(a3) volume near the particle, 
and that the boundary conditions on the surface of a point-particle form an inner 
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10. BJB,  as defined by equation (22), as a function 
showing the approach to unity as aK + 0. 

of aK,  

problem which may be neglected. Hence the important region is exactly that in which 
the equilibrium potential saturates. I suggest here that the saturation of the equili- 
brium charge cloud is the dominant effect, and that the theory for small potentials 
need only be modified in this one respect. Thus we expect that 

(22) 
$0’0 

In  figure 10 the ratio BJB,  is plotted against log ( u K ) .  It does indeed approach 1 as 
UK + 0. Booth found that B, - O - ~ ( U K ) - ~  when UK < 1. Using the result (3) for 
as a K  + 0 we obtain 

Figure 11 shows the ratio of the numerical results to Booth’s predictions for small 
potentials, i.e. it shows I/(B,$$) as a function of $o. We see that Booth’s theory is 
reasonable up to $ro = 2, where the error is less than 10 yo. The sign of the error varies. 
Booth’s theory is always an overestimate when a K  is small, but when aK is large it is 
first an under-estimate. When = 5 the numerical result is 40 yo below Booth’s 
predictions a t  UK = 10, and 20 yo above a t  a K  = lo3. We may also see that Booth’s 
theory is accurate up to higher potentials as the charge cloud becomes thicker, because 
the onset of saturation of the charge cloud is delayed. We have pursued the analysis 
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FIGURE 11. The ratio of the full numerical results to Booth’s linearized theory. 

up to very high potentials in order to understand the physical mechanisms involved. 
In nature, however, potentials rarely exceed five. Even so, the modification to earlier 
theories is not negligible and must be included in any interpretation of experimental 
results. 

O’Brien & White ( 1978) have recently studied electrophoresis. Because this involves 
motion caused by the application of a uniform electric field, the perturbations to the 
charge cloud take the form of first harmonics rather than second. Otherwise the prob- 
lem, and the results they obtained in a numerical study, are similar: they too found 
maxima occurring when a~ was large, and monotonic increase to a limit when aK 

was small. 
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